Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae.
نویسندگان
چکیده
Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait.
منابع مشابه
Fitness epistasis among 6 biosynthetic loci in the budding yeast Saccharomyces cerevisiae.
We generated all possible haploid and homozygous diploid genotypes at 6 biosynthetic loci in yeast and scored their fitness to examine whether there was any pattern of weak synergistic epistasis, which is a requirement of the deterministic mutation model for the evolution of sex. We measured 4 components of fitness: haploid growth rate, haploid mating efficiency, diploid growth rate, and diploi...
متن کاملFour Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. ...
متن کاملNatural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency.
Sporulation is a well-studied process executed with varying efficiency by diverse yeast strains. We developed a high-throughput method to quantify yeast sporulation efficiency and used this technique to analyze a line cross between a high-efficiency oak tree isolate and a low-efficiency wine strain. We find that natural variation in sporulation efficiency mirrors natural variation in higher euk...
متن کاملSmall- and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency.
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative t...
متن کاملSporulation Genes Associated with Sporulation Efficiency in Natural Isolates of Yeast
Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Food technology and biotechnology
دوره 53 4 شماره
صفحات -
تاریخ انتشار 2015